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1 Introduction

In Euclid’s geometry, there are five axioms that lay a solid foundation for all the theorems
and propositions. Euclid’s fifth axiom is the parallel postulate. Because people believed
that the fifth axiom seemed more like a proposition than an axiom, they tried to prove it
from the other four axioms. For centuries, they never succeeded. Finally, in 1868, the Ital-
ian mathematician, Eugenio Beltrami, proved the independence of the parallel postulate.
Moreover, by using the negation of the Euclidean parallel postulate, people found other ge-
ometries such as the hyperbolic geometry of the Russian mathematician Nikolai Ivanovich
Lobachevsky and the spherical geometry of the German mathematician Georg Friedrich
Bernhard Riemann.

2 Neutral Geometry

As mentioned above, the fifth axiom of Euclidean Geometry cannot be derived from the
first four axioms. Let us consider the axiomatic system containing just the first four axioms.
People call such a geometry neutral geometry or absolute geometry.

2.1 Axioms and Definitions

Here are first four of Euclid’s axioms, which makes up the neutral geometry system.
Axiom 1. We may draw a straight line between any two points.

Axiom 2. We may extend any terminated straight line indefinitely.

Axiom 3. We may draw a circle with any given point as center and any given radius.
Axiom 4. All right angles are equal.

We also make some definitions in our axiom system.

Definition: Angles have the same measure if they can be superimposed on each other, which
is A = £ZB iff m£A = m«B, in which case we say that ZA is congruent to £ B. [2]
Definition: Given /AAABC and /AADEF, if SAS, then AABC =~ /\DEF, which is say-
ing,if AB=~ DE, ZA =~ 2D, and AC = DF,then «zB = £E, BC = EF, and 2C = ZF.
(2]

Definition: Given an angle 2ABC and a straight line BC, with the points A and D on the



same side of BC, we say that ZABC > 2DBC if BD is between BA and BC. [1]

2.2 Theorems

With just these axioms we can prove the following theorems.
Theorem 2.1. Vertical angles are always congruent. [3]

Theorem 2.2. If two sides of a triangle are congruent, then the angles opposite to these
sides are congruent. [3]

Theorem 2.3. The measure of an exterior angle of a triangle is greater than the measures
of either of the remote interior angles.

Figure 1: Theorem 2.3

Proof: In Figure 1, consider a /\ABC. Extend BC to D, pick the midpoint of AC as E,
connect BE, and extend BE to F such that BE = FE.

By Theorem 2.1, we know that ZAEB = ZCEF. So /AAEB =~ /\CEF. Then we have
AB = CF, 2BAE = £FCE. Therefore, «zDCE > £FCE = «BAE. We use a similar
technique to prove that z£DCE > 2ABC.

To prove that ZDCE > £ABC, we construct a similar diagram by extending AE to G,
picking the midpoint of BCasH, connecting AH, and extending AH to I suchthat AH =
I H. By Theorem 2.1, we know that zZBHA = #«CH I, 4DCE = 2£BCG. So /ABHA =~
/\CHI. Then we have AB = IC, zZABH = «ICH. Therefore, zDCE = «BCG >
2ICH = £ABH. Thus, the measure of an exterior angle of a triangle is greater than the
measure of either of the remote interior angles. []

The angle sum of a triangle is an important property that differentiates between Eu-
clidean Geometry and non-Euclidean Geometry. Here is the best we can do in Neutral
Geometry.

Theorem 2.4. The sum of the measures of the interior angles of a triangle is at most 180°.



Wallance proved this theorem by contradiction. The proof is too tedious so we will not
restate it here.

Theorem 2.5. If a transversal falls on the lines such that a pair of alternate interior angles
are congruent, then the lines are parallel.
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Figure 2: Definition: Saccheri Quadrilateral

Definition: A Saccheri quadrilateral is a quadrilateral in which a pair of opposite sides
are equal and have one of the other sides as a common perpendicular (see Figure 2). The
common perpendicular is the base, the side opposite to it is the summit, and the angles
adjacent to the summit are the summit angles. [1]

The idea of a Saccheri quadrilateral is crucial to understanding the difference between
Euclidean and non-Euclidean Geometry.

Theorem 2.6. The summit angles of a Saccheri quadrilateral are congruent, and the line
Jjointing the midpoints of the bases is perpendicular to both bases.
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Figure 3: Minpoint Segment Perpendicular



Proof: Suppose we have a Saccheri quadrilateral ABC D like figure 3. Connecting BD
and AC (Figure 2), we get ANABD =~ /ABAC by SAS, so BD = AC, zZADB = 2BCA
and ZABD = «BAC. Then we get LDAC = 2CBD. So ADAC =~ /\CBD by SAS.
Therefore, ZADC = 2BCD.

Furthermore, we can show that the line jointing the midpoints of the bases is perpendicular
to both bases. In Figure 3, let E and F be the mid points of ABand CD. Connect EF, DE
and CE. By SAS, we get ANAED =~ /ABEC. So DE = CE and zADE = #BCE. We
know that ZADC = £BCD from above. So again by SAS, ADEF ~ /\CEF. Since
F is apoint on DC and ZDFE = 2CFE are a linear pair, so ZDFE = 2£CFE = 90°.
Similarly, we can get ZAEF = 2BEF =90° by connecting AF and BF. Thus, the summit
angles of a Saccheri quadrilateral are congruent. In addition, the line jointing the midpoints
of the bases is perpendicular to both bases.

The following theorem helps us understanding the difference between Euclidean and
non-Euclidean Geometry.

Theorem 2.7. The summit angles of a Saccheri quadrilateral are not obtuse and thus are
both acute or both right. [3]

Here we are not going to prove Theorem 2.7; instead, we will prove a weaker result.
However, before that, we still need several extra theorems.

Definition: A — B — C means A, B and C are collinear and B is between A and C. [2]

Theorem 2.8. If, from the endpoints of a given side of a /\ABC, we draw perpendiculars
BF and CG to a straight line through the midpoints D and E of the other two sides, AB
and AC, forming a quadrilateral GC BF, then the following are true. L

(a) The quadrilateral is a Saccheri quadrilateral whose summit is the given side BC of the
triangle.

(b) The base FG is twice the length of the straight line DE joining the midpoints of the
triangles other two sides.

(c) Its two summit angles (£F BC and £GC B) have the same sum as the three interior
angles of the triangle.

Proof: Let H be the foot of a L from A to DE. Then either H — D — E,D—-H - E,
D—E—-H,D = H or E = H. We first consider the situation when D — H — E, see Figure
4. Weknow D— H—E, B— D— A. If H and F are on the same side of E, by the exterior
angle theorem, since ZAH E is right, we get ZADH is acute and ZBDH is obtuse. Then
«4BFH > «BDH, by the exterior angle theorem, this is a contradiction. So H and F are
on the opposite sides of AB, sowe have F — D — H.

Now, BD = AD, .BDF =~ +ADH, 4/BFD = £AHD, so \ABDF = /\ADH by AAS.
Also, AE = CE, ZAHE ~ «/CGE, ZAEH =~ £CEG, so /AAHE =~ /\CGE by AAS.
Thus, FB = AH = GC. Therefore, F BCG is a Saccheri quadrilateral. This proves (a).



Figure 4: Triangle and Saccheri Quadrilateral

Also, FD = DH and HE = GE, so

FG = FD+DH+HE + EG
= DH+DH+HE+ HE
2(DE + HE)
= 2DE.

This proves (b)
Plus, zDBF = #zDAH and «zGCE = 2EAH, so

LA+ 2B+2C = «DAH +«2FEAH + 2ABC + 2ACB
= «DBF + 2GCE + 2zABC + 2zACB
= «FBC+ 2GCB.

This proves (c).
The other four situations are similar so we omit the proof here. []

Theorem 2.9. The line segment connecting the midpoints of two sides of a triangle is par-
allel to the third side.

Proof: In Figure 5, consider a /A ABC, pick the midpoint of AB as D, pick the midpoint of
AC as E , connect DFE and extend it to F such that DE = EF, connect CF. By Theorem
2.1, we know that ZAED = #CEF. So /AAED =~ /\CEF. Then we get the alternate
interior angles ZCFE and ZADE are congruent. So CF || AB.

In addition, we have CF = AD = DB. Now we have a cdBCF D, so DE [| BC. Thus,
the line segment connecting the midpoints of two sides of a triangle is parallel to the third
side. []

Definition: Equidistant means every point on one line is the same distance from the other.

[1]

Equidistance is another property that distinguishes Euclidean and non-Euclidean Ge-
ometry. Theorem 2.10 is the best we can do in Neutral Geometry.



Figure 5: Theorem 2.9

Theorem 2.10. Let | and m have a common perpendicular. That is, suppose P, S € | and
O, T € m are such that PQ and ST are perpendicular to both | and m. Then | and m are
equidistant. [2]

Now we have had sufficient theorems we need to prove the weaker version of Theorem
2.7 and here is it.

Theorem 2.11. Ifthere exists one Saccheri quadrilateral whose upper base angles are right,
then the upper base angles of every Saccheri quadrilateral are right.

Proof: Let ABC D be Saccheri quadrilateral. Assume «B and «C are right. Let XY ZW
be a Saccheri quadrilateral. Let M be the midpoint of AD and N be the midpoint of BC.
By Theorem 2.6 and Theorem 2.10, M N = C D. Now we need to consider 3 cases, M N <
XY, MN = XY and MN > XY. We will prove the situation where M N < XY first.
Suppose M N < XY,

See Figure 6, let P € M N be such that P is on the same of AD as N and such that
PM = XY. Let PS 1 MM at S, and let O be such that PO = XW . Let T be the
foot of a perpendicular from Q to AD. Since PQ || BC || AD, Q,T are on opposite
sides of BC. Therefore, we get BC will intersect QT at some point V. By Theorem 2.10,
VT = CD, so CVTD is a rectangle and £CVT = z /2. Since PM and QT have two
common perpendiculars, they are equidistant by Theorem 2.10. So PQ = MT. Thus,
£PQT = £zMTQ = =z /2 by Theorem 2.6. So PM = QT. Thus, PMTQ is a Saccheri
quadrilateral. So PMTQ and XY ZW are both Saccheri quadrilateral, with PM = XY,
TO=ZW and PQ=XW.So«M =2Y =27 =xn/2. ]

Theorem 2.12. The summit angles of a Saccheri quadrilateral are not obtuse and thus are
both acute or both right.

This is an important theorem but we are not going to prove it here.
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Figure 6: Theorem 2.10

Definition: A quadrilateral having four right angles is a rectangle. [2]
Theorem 2.13. If one rectangle exists, then every triangle has an angle sum of 180°. [3]

Proof: By Theorem 2.8(c), we know that two summit angles of a Saccheri quadrilateral
have the same sum as the three interior angles of the triangle. Suppose one rectangle exists,
by Theorem 2.11, all Saccheri quadrilaterals are rectangles. Then the sum of three interior
angles of the triangle equals to two right angles, which is 180°. []

Neutral geometries are somewhat clear and straightforward so we only gave proof for
some selected theorems above. Later in the paper, we will see more proofs based on the
proofs in neutral geometry. After all, both Euclidean geometry and hyperbolic geometry
use the four axioms in neutral geometry as their first four axioms.

3 Euclidean Geometry

3.1 Axioms

Adding the parallel postulate to the four axioms of neutral geometry gives us the axioms of
Euclidean geometry.

Axiom 1. We may draw a straight line between any two points.

Axiom 2. We may extend any terminated straight line indefinitely.

Axiom 3. We may draw a circle with any given point as center and any given radius.
Axiom 4. All right angles are equal.



The first 4 axioms are the same as in Neutral Geometry. For Euclidean Geometry, we
add the following axiom.

Axiom 5. Given a line and a point not on the line, only one unique line through the point is
parallel to the given line

3.2 Theorems

Theorem 3.1. If a transversal crosses two parallel lines, the alternate interior angles are
congruent.

Theorem 3.2. The measure of an exterior angle is equal to the sum of the measures of the
two remote interior angles of the triangle.

Theorem 3.1 directly follows from the converse of the alternate interior angle theorem.
In addition, Theorem 3.2 is a direct consequence of Theorem 3.1. Theorem 3.2 is an example
which theorem is true in Euclidean Geometry since it is true in Neutral Geometry. However,
there are some theorems that are true in Euclidean Geometry while are not true in Neutral
Geometry, because it relies on the parallel postulate. Theorem 3.3 is an example for this.

Theorem 3.3. The sum of the measures of the interior angles of a triangle is 180°.

& c

Figure 7: Theorem 3.3

Proof: Consider /\ ABC shown in Figure 7. According to the Euclidean parallel postulate,
there is a unique line m through B parallel to line AC. Pick two points D, E on line m such
that D — B — E. Since ZABD, ZABC and ZCBE form a linear triple, their sum is 180°.
Applying the converse of the alternate interior triangle theorem, we see that m£ABD =
m«£BAC and m£CBE = mzACB. Since m£ABD + mzZABC + mZCBE = 180°. We
have, by substitution, m£ZBAC + m£ABC + m£ZACB = 180°. [

Theorem 3.4. The line segment connecting the midpoints of two sides of a triangle is con-
gruent to half of the third side.



Proof: Consider Theorem 2.9 and Figure 5. We have shown BCFD is a parallelogram and
/N\AED =~ /\CEF. So DF = BC, DE = EF. Therefore, DE = (1/2) * BC. []

The three theorems (Theorem 3.2, Theorem 3.3 and Theorem 3.4) above had a similar
version in neutral geometry. However, in order to get a more specific conclusion, we have to
prove them in Euclidean geometry, since we used the parallel axiom. Here are some other
theorems in Euclidean geometry that are quite valuable for our research.

Theorem 3.5. Rectangles exist in Euclidean geometry. [3]

Theorem 3.6. Parallel lines are everywhere equidistant in Euclidean geometry.

Figure 8: Theorem 3.7

Proof: Consider two parallel lines f || g. As Figure 8 shows, on f', pick a point A and draw
AC 1 g, intersecting g at point C. On g, pick a point D and draw BD 1 f, intersecting f
at point B.

Then we have ZACD = 2zDBA, ZADC = 2zDAB, AD = DA.

By AAS, /AAACD =~ /ADBA. So 4.CAD = «.BDA, 4.CDA = £BAD.

Since sum of angles of a triangle is 180°, ZCAB = £BDC = 90°. Therefore, ACDB is a
rectangle. This proves Theorem 3.5. In addition, AC = DB, this proves Theorem 3.6
Thus, rectangles exist in Euclidean geometry. In addition, parallel lines are everywhere
equidistant in Euclidean geometry. []

Those two theorems are typical examples of theorems that are true in Euclidean geom-
etry while their negation is true in hyperbolic geometry. We prove them soon.

4 Hyperbolic Geometry

4.1 Gauss and Bolyai

Gauss left the task of publishing results in non-Euclidean geometries to other mathemati-
cians. One of individuals who rose to this challenge was the Hungarian mathematician
Janos Bolyai. Janos was the son of Farkas Bolyai, who worked with Gauss on a variety of
projects.



During the early 1820s, while studying in Vienna, Bolyai began to work on what he called
a “complete system of non-Euclidean geometry." In fact, Bolyai was developing much of
what today we call hyperbolic geometry. Farkas Bolyai published his son’s work as an ap-
pendix to one of his own essays. When Gauss encountered this appendix, he replied, “To
praise this work would amount to praising myself. For the entire content of the work... co-
incides almost exactly with my own meditations."

These remarks discouraged Janos Bolyai. Although he produced over 20,000 pages of
manuscript in mathematics, his only publication was the 24-page paper on non-Euclidean
geometry. [3]

4.2 The Negation of the Parallel Postulate

There are two different cases if we take the negation of the Euclidean parallel postulate.
One of them is “Given a line and a point not on the line, no line through the point is parallel
to the given line" while the other one is “Given a line and a point not on the line, at least two
lines through the point are parallel to the given line". If we consider the first negation, we
get spherical geometry, while it gives us the hyperbolic geometry if we consider the second
negation. Furthermore, if there are at least two lines through the point are parallel to the
given line, there are actually infinitely many lines through the point are parallel to the given
line. So we choose to use this negation as the fifth axiom of hyperbolic geometry, which is
“Given a line and a point not on the line, infinitely many lines through the point are parallel
to the given line".

4.3 Axioms

Adding this to the few axioms of neutral geometry gives us the axioms of hyperbolic geom-
etry.

Axiom 1. We may draw a straight line between any two points.

Axiom 2. We may extend any terminated straight line indefinitely.

Axiom 3. We may draw a circle with any given point as center and any given radius.
Axiom 4. All right angles are equal.

The first 4 axioms are the same as in Neutral Geometry. For Hyperbolic Geometry, we
add the following axiom.

Axiom 5. Given a line and a point not on the line, infinitely many lines through the point
are parallel to the given line.

Theorem 4.1. The summit angles of a Saccheri quadrilateral are acute.

Proof: Assume that the summit angles of a Saccheri quadrilateral are not acute. Since
we have Theorem 2.7 and Theorem 2.12, we can get a result that the summit angles are
both right angles. Now we have found a rectangle, then by Theorem 2.13 every triangle
has an angle sum of 180°. This is equivalent to the Euclidean parallel postulate. This is a
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contradiction for hyperbolic parallel postulate. Therefore, the summit angles of a Saccheri
quadrilateral are acute. []

The Italian mathematician Giovanni Girolamo Saccheri in 1733 tried to prove the sum-
mit angles of a Saccheri quadrilateral are 90° but failed. However, in the mid-19th century,
Eugenio Beltrami, rediscovered this, as a significant result on non-Euclidean geometry.

In the proof of Theorem 4.1, we have actually proved the following theorem.
Theorem 4.2. Rectangles do not exist in hyperbolic geometry.

Theorem 4.3. Parallel Lines are not everywhere equidistant in hyperbolic geometry.

] ] a|

Figure 9: Theorem 4.3

Proof: To prove this, we must show that, if given any pair of parallel lines / and m, we can
find at least one pair of points on line / for which the distance to m are not the same. To
prove this, we will begin with any three points on / and proceed in the following way. In
Figure 9, choose any pair of parallel lines / and m and any three distinct points A, B and C
on / such that A — B — C (A, B and C are collinear pairs). D, E and F are the feet of the
perpendicular, respectively, from A, B and C to m.

Assume AD = BE = CF. Then Figure 9 displays three “inverted” Saccheri quadrilaterals:
(ODABE, [JEBCF and [JDACF. So m£DAB = mzEBA, m£EBC = mzZFCB, and
m«£DAB = m«FC B. Then we have the congruent linear pair m£EBA = mzZEBC = 90°.
Therefore, msEBC = mzFCB = mtZDAB = mzFCB = 90°. Therefore, [ |]DABE,
(JEBCF and [[]JDACF are all rectangles. However, this a contradiction by Theorem 4.2.
Therefore, AD = BE = CF is false and we can conclude that parallel lines are not every-
where equidistant in hyperbolic geometry. []

Here we gave a proof to the statement we made in the last section. Some theorems are
true in Euclidean geometry, while its negation is true in hyperbolic geometry.

Theorem 4.4. The sum of the measures of the interior angles of a triangle is less than 180°.

Proof: Let /A ABC be any triangle, see Figure 5. Bisect AB at D and AC at E. Connect
DE and extend DE towards both directions. Draw BF and CG L to the extended DE.
Then we get a Saccheri quadrilateral G F BC with summit BC by Theorem 2.8. Draw AH 1
DE. Again by Theorem 2.8, £F BC + £GC B = the angle sum of AAABC. By Theorem
4.1, zFBC <90°, 2GCB < 90°. Therefore, £F BC + 2GCB is less than 180°. Thus, the
sum of the measures of the interior angles of a triangle is less than 180°. []
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Comparing with similar theorems in the other two geometry systems, this theorem gives
us an excellent example that small changes to even one axiom in a geometry system can lead
us to a very different conclusion.
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