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1 Introduction
In Euclid’s geometry, there are five axioms that lay a solid foundation for all the theorems
and propositions. Euclid’s fifth axiom is the parallel postulate. Because people believed
that the fifth axiom seemed more like a proposition than an axiom, they tried to prove it
from the other four axioms. For centuries, they never succeeded. Finally, in 1868, the Ital-
ian mathematician, Eugenio Beltrami, proved the independence of the parallel postulate.
Moreover, by using the negation of the Euclidean parallel postulate, people found other ge-
ometries such as the hyperbolic geometry of the Russian mathematician Nikolai Ivanovich
Lobachevsky and the spherical geometry of the German mathematician Georg Friedrich
Bernhard Riemann.

2 Neutral Geometry
As mentioned above, the fifth axiom of Euclidean Geometry cannot be derived from the
first four axioms. Let us consider the axiomatic system containing just the first four axioms.
People call such a geometry neutral geometry or absolute geometry.

2.1 Axioms and Definitions
Here are first four of Euclid’s axioms, which makes up the neutral geometry system.
Axiom 1. We may draw a straight line between any two points.
Axiom 2. We may extend any terminated straight line indefinitely.
Axiom 3. We may draw a circle with any given point as center and any given radius.
Axiom 4. All right angles are equal.
We also make some definitions in our axiom system.
Definition: Angles have the same measure if they can be superimposed on each other, which
is ∠𝐴 = ∠𝐵 iff 𝑚∠𝐴 = 𝑚∠𝐵, in which case we say that ∠𝐴 is congruent to ∠𝐵. [2]
Definition: Given △𝐴𝐵𝐶 and △𝐷𝐸𝐹 , if SAS, then △𝐴𝐵𝐶 ≅ △𝐷𝐸𝐹 , which is say-
ing, if 𝐴𝐵 ≅ 𝐷𝐸, ∠𝐴 ≅ ∠𝐷, and 𝐴𝐶 ≅ 𝐷𝐹 , then ∠𝐵 ≅ ∠𝐸, 𝐵𝐶 ≅ 𝐸𝐹 , and ∠𝐶 ≅ ∠𝐹 .
[2]
Definition: Given an angle ∠𝐴𝐵𝐶 and a straight line 𝐵𝐶 , with the points 𝐴 and 𝐷 on the



same side of BC, we say that ∠𝐴𝐵𝐶 > ∠𝐷𝐵𝐶 if 𝐵𝐷 is between 𝐵𝐴 and 𝐵𝐶 . [1]

2.2 Theorems
With just these axioms we can prove the following theorems.
Theorem 2.1. Vertical angles are always congruent. [3]

Theorem 2.2. If two sides of a triangle are congruent, then the angles opposite to these
sides are congruent. [3]

Theorem 2.3. The measure of an exterior angle of a triangle is greater than the measures
of either of the remote interior angles.

Figure 1: Theorem 2.3
Proof: In Figure 1, consider a △𝐴𝐵𝐶 . Extend 𝐵𝐶 to 𝐷, pick the midpoint of 𝐴𝐶 as 𝐸,
connect 𝐵𝐸, and extend 𝐵𝐸 to 𝐹 such that 𝐵𝐸 = 𝐹𝐸.
By Theorem 2.1, we know that ∠𝐴𝐸𝐵 = ∠𝐶𝐸𝐹 . So △𝐴𝐸𝐵 ≅ △𝐶𝐸𝐹 . Then we have
𝐴𝐵 = 𝐶𝐹 , ∠𝐵𝐴𝐸 = ∠𝐹𝐶𝐸. Therefore, ∠𝐷𝐶𝐸 > ∠𝐹𝐶𝐸 = ∠𝐵𝐴𝐸. We use a similar
technique to prove that ∠𝐷𝐶𝐸 > ∠𝐴𝐵𝐶 .
To prove that ∠𝐷𝐶𝐸 > ∠𝐴𝐵𝐶 , we construct a similar diagram by extending 𝐴𝐸 to 𝐺,
picking the midpoint of 𝐵𝐶 as 𝐻 , connecting 𝐴𝐻 , and extending 𝐴𝐻 to 𝐼 such that 𝐴𝐻 =
𝐼𝐻 . By Theorem 2.1, we know that ∠𝐵𝐻𝐴 = ∠𝐶𝐻𝐼 , ∠𝐷𝐶𝐸 = ∠𝐵𝐶𝐺. So △𝐵𝐻𝐴 ≅
△𝐶𝐻𝐼 . Then we have 𝐴𝐵 = 𝐼𝐶 , ∠𝐴𝐵𝐻 = ∠𝐼𝐶𝐻 . Therefore, ∠𝐷𝐶𝐸 = ∠𝐵𝐶𝐺 >
∠𝐼𝐶𝐻 = ∠𝐴𝐵𝐻 . Thus, the measure of an exterior angle of a triangle is greater than the
measure of either of the remote interior angles. □

The angle sum of a triangle is an important property that differentiates between Eu-
clidean Geometry and non-Euclidean Geometry. Here is the best we can do in Neutral
Geometry.
Theorem 2.4. The sum of the measures of the interior angles of a triangle is at most 180°.
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Wallance proved this theorem by contradiction. The proof is too tedious so we will not
restate it here.
Theorem 2.5. If a transversal falls on the lines such that a pair of alternate interior angles
are congruent, then the lines are parallel.

Figure 2: Definition: Saccheri Quadrilateral
Definition: A Saccheri quadrilateral is a quadrilateral in which a pair of opposite sides
are equal and have one of the other sides as a common perpendicular (see Figure 2). The
common perpendicular is the base, the side opposite to it is the summit, and the angles
adjacent to the summit are the summit angles. [1]

The idea of a Saccheri quadrilateral is crucial to understanding the difference between
Euclidean and non-Euclidean Geometry.
Theorem 2.6. The summit angles of a Saccheri quadrilateral are congruent, and the line
jointing the midpoints of the bases is perpendicular to both bases.

Figure 3: Minpoint Segment Perpendicular
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Proof: Suppose we have a Saccheri quadrilateral 𝐴𝐵𝐶𝐷 like figure 3. Connecting 𝐵𝐷
and 𝐴𝐶 (Figure 2), we get △𝐴𝐵𝐷 ≅ △𝐵𝐴𝐶 by SAS, so 𝐵𝐷 = 𝐴𝐶 , ∠𝐴𝐷𝐵 = ∠𝐵𝐶𝐴
and ∠𝐴𝐵𝐷 = ∠𝐵𝐴𝐶 . Then we get ∠𝐷𝐴𝐶 = ∠𝐶𝐵𝐷. So △𝐷𝐴𝐶 ≅ △𝐶𝐵𝐷 by SAS.
Therefore, ∠𝐴𝐷𝐶 = ∠𝐵𝐶𝐷.
Furthermore, we can show that the line jointing the midpoints of the bases is perpendicular
to both bases. In Figure 3, let 𝐸 and 𝐹 be the mid points of 𝐴𝐵 and 𝐶𝐷. Connect 𝐸𝐹 , 𝐷𝐸
and 𝐶𝐸. By SAS, we get △𝐴𝐸𝐷 ≅ △𝐵𝐸𝐶 . So 𝐷𝐸 = 𝐶𝐸 and ∠𝐴𝐷𝐸 = ∠𝐵𝐶𝐸. We
know that ∠𝐴𝐷𝐶 = ∠𝐵𝐶𝐷 from above. So again by SAS, △𝐷𝐸𝐹 ≅ △𝐶𝐸𝐹 . Since
𝐹 is a point on 𝐷𝐶 and ∠𝐷𝐹𝐸 = ∠𝐶𝐹𝐸 are a linear pair, so ∠𝐷𝐹𝐸 = ∠𝐶𝐹𝐸 = 90°.
Similarly, we can get∠𝐴𝐸𝐹 = ∠𝐵𝐸𝐹 = 90° by connecting𝐴𝐹 and𝐵𝐹 . Thus, the summit
angles of a Saccheri quadrilateral are congruent. In addition, the line jointing the midpoints
of the bases is perpendicular to both bases.

The following theorem helps us understanding the difference between Euclidean and
non-Euclidean Geometry.
Theorem 2.7. The summit angles of a Saccheri quadrilateral are not obtuse and thus are
both acute or both right. [3]

Here we are not going to prove Theorem 2.7; instead, we will prove a weaker result.
However, before that, we still need several extra theorems.
Definition: 𝐴 − 𝐵 − 𝐶 means 𝐴,𝐵 and 𝐶 are collinear and 𝐵 is between 𝐴 and 𝐶 . [2]
Theorem 2.8. If, from the endpoints of a given side of a △𝐴𝐵𝐶 , we draw perpendiculars
𝐵𝐹 and 𝐶𝐺 to a straight line through the midpoints 𝐷 and 𝐸 of the other two sides, 𝐴𝐵
and 𝐴𝐶 , forming a quadrilateral 𝐺𝐶𝐵𝐹 , then the following are true.
(a) The quadrilateral is a Saccheri quadrilateral whose summit is the given side 𝐵𝐶 of the
triangle.
(b) The base 𝐹𝐺 is twice the length of the straight line 𝐷𝐸 joining the midpoints of the
triangles other two sides.
(c) Its two summit angles (∠𝐹𝐵𝐶 and ∠𝐺𝐶𝐵) have the same sum as the three interior
angles of the triangle.

Proof: Let 𝐻 be the foot of a ⟂ from 𝐴 to 𝐷𝐸. Then either 𝐻 − 𝐷 − 𝐸, 𝐷 − 𝐻 − 𝐸,
𝐷−𝐸−𝐻 , 𝐷 = 𝐻 or 𝐸 = 𝐻 . We first consider the situation when 𝐷−𝐻 −𝐸, see Figure
4. We know 𝐷−𝐻 −𝐸, 𝐵−𝐷−𝐴. If 𝐻 and 𝐹 are on the same side of 𝐴𝐵, by the exterior
angle theorem, since ∠𝐴𝐻𝐸 is right, we get ∠𝐴𝐷𝐻 is acute and ∠𝐵𝐷𝐻 is obtuse. Then
∠𝐵𝐹𝐻 > ∠𝐵𝐷𝐻 , by the exterior angle theorem, this is a contradiction. So 𝐻 and 𝐹 are
on the opposite sides of 𝐴𝐵, so we have 𝐹 −𝐷 −𝐻 .
Now, 𝐵𝐷 = 𝐴𝐷, ∠𝐵𝐷𝐹 ≅ ∠𝐴𝐷𝐻 , ∠𝐵𝐹𝐷 ≅ ∠𝐴𝐻𝐷, so △𝐵𝐷𝐹 ≅ △𝐴𝐷𝐻 by AAS.
Also, 𝐴𝐸 = 𝐶𝐸, ∠𝐴𝐻𝐸 ≅ ∠𝐶𝐺𝐸, ∠𝐴𝐸𝐻 ≅ ∠𝐶𝐸𝐺, so △𝐴𝐻𝐸 ≅ △𝐶𝐺𝐸 by AAS.
Thus, 𝐹𝐵 = 𝐴𝐻 = 𝐺𝐶 . Therefore, 𝐹𝐵𝐶𝐺 is a Saccheri quadrilateral. This proves (a).
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Figure 4: Triangle and Saccheri Quadrilateral

Also, 𝐹𝐷 = 𝐷𝐻 and 𝐻𝐸 = 𝐺𝐸, so
𝐹𝐺 = 𝐹𝐷 +𝐷𝐻 +𝐻𝐸 + 𝐸𝐺

= 𝐷𝐻 +𝐷𝐻 +𝐻𝐸 +𝐻𝐸
= 2(𝐷𝐸 +𝐻𝐸)
= 2𝐷𝐸.

This proves (b)
Plus, ∠𝐷𝐵𝐹 = ∠𝐷𝐴𝐻 and ∠𝐺𝐶𝐸 = ∠𝐸𝐴𝐻 , so

∠𝐴 + ∠𝐵 + ∠𝐶 = ∠𝐷𝐴𝐻 + ∠𝐸𝐴𝐻 + ∠𝐴𝐵𝐶 + ∠𝐴𝐶𝐵
= ∠𝐷𝐵𝐹 + ∠𝐺𝐶𝐸 + ∠𝐴𝐵𝐶 + ∠𝐴𝐶𝐵
= ∠𝐹𝐵𝐶 + ∠𝐺𝐶𝐵.

This proves (c).
The other four situations are similar so we omit the proof here. □
Theorem 2.9. The line segment connecting the midpoints of two sides of a triangle is par-
allel to the third side.

Proof: In Figure 5, consider a △𝐴𝐵𝐶 , pick the midpoint of 𝐴𝐵 as 𝐷, pick the midpoint of
𝐴𝐶 as 𝐸, connect 𝐷𝐸 and extend it to 𝐹 such that 𝐷𝐸 = 𝐸𝐹 , connect 𝐶𝐹 . By Theorem
2.1, we know that ∠𝐴𝐸𝐷 = ∠𝐶𝐸𝐹 . So △𝐴𝐸𝐷 ≅ △𝐶𝐸𝐹 . Then we get the alternate
interior angles ∠𝐶𝐹𝐸 and ∠𝐴𝐷𝐸 are congruent. So 𝐶𝐹 ∥ 𝐴𝐵.
In addition, we have 𝐶𝐹 = 𝐴𝐷 = 𝐷𝐵. Now we have a ▱𝐵𝐶𝐹𝐷, so 𝐷𝐸 ∥ 𝐵𝐶 . Thus,
the line segment connecting the midpoints of two sides of a triangle is parallel to the third
side. □
Definition: Equidistant means every point on one line is the same distance from the other.
[1]

Equidistance is another property that distinguishes Euclidean and non-Euclidean Ge-
ometry. Theorem 2.10 is the best we can do in Neutral Geometry.
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Figure 5: Theorem 2.9

Theorem 2.10. Let 𝑙 and 𝑚 have a common perpendicular. That is, suppose 𝑃 , 𝑆 ∈ 𝑙 and
𝑄, 𝑇 ∈ 𝑚 are such that 𝑃𝑄 and 𝑆𝑇 are perpendicular to both 𝑙 and 𝑚. Then 𝑙 and 𝑚 are
equidistant. [2]

Now we have had sufficient theorems we need to prove the weaker version of Theorem
2.7 and here is it.
Theorem 2.11. If there exists one Saccheri quadrilateral whose upper base angles are right,
then the upper base angles of every Saccheri quadrilateral are right.

Proof: Let 𝐴𝐵𝐶𝐷 be Saccheri quadrilateral. Assume ∠𝐵 and ∠𝐶 are right. Let 𝑋𝑌𝑍𝑊
be a Saccheri quadrilateral. Let 𝑀 be the midpoint of 𝐴𝐷 and 𝑁 be the midpoint of 𝐵𝐶 .
By Theorem 2.6 and Theorem 2.10, 𝑀𝑁 = 𝐶𝐷. Now we need to consider 3 cases, 𝑀𝑁 <
𝑋𝑌 , 𝑀𝑁 = 𝑋𝑌 and 𝑀𝑁 > 𝑋𝑌 . We will prove the situation where 𝑀𝑁 < 𝑋𝑌 first.
Suppose 𝑀𝑁 < 𝑋𝑌 ,
See Figure 6, let 𝑃 ∈ 𝑀𝑁 be such that 𝑃 is on the same of 𝐴𝐷 as 𝑁 and such that
𝑃𝑀 = 𝑋𝑌 . Let 𝑃𝑆 ⟂ 𝑀𝑀 at 𝑆, and let 𝑄 be such that 𝑃𝑄 = 𝑋𝑊 . Let 𝑇 be the
foot of a perpendicular from 𝑄 to 𝐴𝐷. Since 𝑃𝑄 ∥ 𝐵𝐶 ∥ 𝐴𝐷, 𝑄, 𝑇 are on opposite
sides of 𝐵𝐶 . Therefore, we get 𝐵𝐶 will intersect 𝑄𝑇 at some point 𝑉 . By Theorem 2.10,
𝑉 𝑇 = 𝐶𝐷, so 𝐶𝑉 𝑇𝐷 is a rectangle and ∠𝐶𝑉 𝑇 = 𝜋∕2. Since 𝑃𝑀 and 𝑄𝑇 have two
common perpendiculars, they are equidistant by Theorem 2.10. So 𝑃𝑄 = 𝑀𝑇 . Thus,
∠𝑃𝑄𝑇 = ∠𝑀𝑇𝑄 = 𝜋∕2 by Theorem 2.6. So 𝑃𝑀 = 𝑄𝑇 . Thus, 𝑃𝑀𝑇𝑄 is a Saccheri
quadrilateral. So 𝑃𝑀𝑇𝑄 and 𝑋𝑌𝑍𝑊 are both Saccheri quadrilateral, with 𝑃𝑀 = 𝑋𝑌 ,
𝑇𝑄 = 𝑍𝑊 and 𝑃𝑄 = 𝑋𝑊 . So ∠𝑀 = ∠𝑌 = ∠𝑍 = 𝜋∕2. □
Theorem 2.12. The summit angles of a Saccheri quadrilateral are not obtuse and thus are
both acute or both right.

This is an important theorem but we are not going to prove it here.
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Figure 6: Theorem 2.10

Definition: A quadrilateral having four right angles is a rectangle. [2]
Theorem 2.13. If one rectangle exists, then every triangle has an angle sum of 180°. [3]

Proof: By Theorem 2.8(c), we know that two summit angles of a Saccheri quadrilateral
have the same sum as the three interior angles of the triangle. Suppose one rectangle exists,
by Theorem 2.11, all Saccheri quadrilaterals are rectangles. Then the sum of three interior
angles of the triangle equals to two right angles, which is 180°. □

Neutral geometries are somewhat clear and straightforward so we only gave proof for
some selected theorems above. Later in the paper, we will see more proofs based on the
proofs in neutral geometry. After all, both Euclidean geometry and hyperbolic geometry
use the four axioms in neutral geometry as their first four axioms.

3 Euclidean Geometry

3.1 Axioms
Adding the parallel postulate to the four axioms of neutral geometry gives us the axioms of
Euclidean geometry.
Axiom 1. We may draw a straight line between any two points.
Axiom 2. We may extend any terminated straight line indefinitely.
Axiom 3. We may draw a circle with any given point as center and any given radius.
Axiom 4. All right angles are equal.

7



The first 4 axioms are the same as in Neutral Geometry. For Euclidean Geometry, we
add the following axiom.
Axiom 5. Given a line and a point not on the line, only one unique line through the point is
parallel to the given line

3.2 Theorems
Theorem 3.1. If a transversal crosses two parallel lines, the alternate interior angles are
congruent.

Theorem 3.2. The measure of an exterior angle is equal to the sum of the measures of the
two remote interior angles of the triangle.

Theorem 3.1 directly follows from the converse of the alternate interior angle theorem.
In addition, Theorem 3.2 is a direct consequence of Theorem 3.1. Theorem 3.2 is an example
which theorem is true in Euclidean Geometry since it is true in Neutral Geometry. However,
there are some theorems that are true in Euclidean Geometry while are not true in Neutral
Geometry, because it relies on the parallel postulate. Theorem 3.3 is an example for this.
Theorem 3.3. The sum of the measures of the interior angles of a triangle is 180°.

Figure 7: Theorem 3.3
Proof: Consider △𝐴𝐵𝐶 shown in Figure 7. According to the Euclidean parallel postulate,
there is a unique line 𝑚 through 𝐵 parallel to line 𝐴𝐶 . Pick two points 𝐷,𝐸 on line 𝑚 such
that 𝐷 − 𝐵 − 𝐸. Since ∠𝐴𝐵𝐷, ∠𝐴𝐵𝐶 and ∠𝐶𝐵𝐸 form a linear triple, their sum is 180°.
Applying the converse of the alternate interior triangle theorem, we see that 𝑚∠𝐴𝐵𝐷 =
𝑚∠𝐵𝐴𝐶 and 𝑚∠𝐶𝐵𝐸 = 𝑚∠𝐴𝐶𝐵. Since 𝑚∠𝐴𝐵𝐷 + 𝑚∠𝐴𝐵𝐶 + 𝑚∠𝐶𝐵𝐸 = 180°. We
have, by substitution, 𝑚∠𝐵𝐴𝐶 + 𝑚∠𝐴𝐵𝐶 + 𝑚∠𝐴𝐶𝐵 = 180°. □
Theorem 3.4. The line segment connecting the midpoints of two sides of a triangle is con-
gruent to half of the third side.
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Proof: Consider Theorem 2.9 and Figure 5. We have shown BCFD is a parallelogram and
△𝐴𝐸𝐷 ≅ △𝐶𝐸𝐹 . So 𝐷𝐹 = 𝐵𝐶,𝐷𝐸 = 𝐸𝐹 . Therefore, 𝐷𝐸 = (1∕2) ∗ 𝐵𝐶 . □

The three theorems (Theorem 3.2, Theorem 3.3 and Theorem 3.4) above had a similar
version in neutral geometry. However, in order to get a more specific conclusion, we have to
prove them in Euclidean geometry, since we used the parallel axiom. Here are some other
theorems in Euclidean geometry that are quite valuable for our research.
Theorem 3.5. Rectangles exist in Euclidean geometry. [3]

Theorem 3.6. Parallel lines are everywhere equidistant in Euclidean geometry.

Figure 8: Theorem 3.7
Proof: Consider two parallel lines 𝑓 ∥ 𝑔. As Figure 8 shows, on 𝑓 , pick a point 𝐴 and draw
𝐴𝐶 ⟂ 𝑔, intersecting 𝑔 at point 𝐶 . On 𝑔, pick a point 𝐷 and draw 𝐵𝐷 ⟂ 𝑓 , intersecting 𝑓
at point 𝐵.
Then we have ∠𝐴𝐶𝐷 = ∠𝐷𝐵𝐴, ∠𝐴𝐷𝐶 = ∠𝐷𝐴𝐵, 𝐴𝐷 = 𝐷𝐴.
By AAS, △𝐴𝐶𝐷 ≅ △𝐷𝐵𝐴. So ∠𝐶𝐴𝐷 = ∠𝐵𝐷𝐴, ∠𝐶𝐷𝐴 = ∠𝐵𝐴𝐷.
Since sum of angles of a triangle is 180°, ∠𝐶𝐴𝐵 = ∠𝐵𝐷𝐶 = 90°. Therefore, 𝐴𝐶𝐷𝐵 is a
rectangle. This proves Theorem 3.5. In addition, 𝐴𝐶 = 𝐷𝐵, this proves Theorem 3.6
Thus, rectangles exist in Euclidean geometry. In addition, parallel lines are everywhere
equidistant in Euclidean geometry. □

Those two theorems are typical examples of theorems that are true in Euclidean geom-
etry while their negation is true in hyperbolic geometry. We prove them soon.

4 Hyperbolic Geometry

4.1 Gauss and Bolyai
Gauss left the task of publishing results in non-Euclidean geometries to other mathemati-
cians. One of individuals who rose to this challenge was the Hungarian mathematician
Janos Bolyai. Janos was the son of Farkas Bolyai, who worked with Gauss on a variety of
projects.
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During the early 1820s, while studying in Vienna, Bolyai began to work on what he called
a “complete system of non-Euclidean geometry." In fact, Bolyai was developing much of
what today we call hyperbolic geometry. Farkas Bolyai published his son’s work as an ap-
pendix to one of his own essays. When Gauss encountered this appendix, he replied, “To
praise this work would amount to praising myself. For the entire content of the work... co-
incides almost exactly with my own meditations."
These remarks discouraged Janos Bolyai. Although he produced over 20,000 pages of
manuscript in mathematics, his only publication was the 24-page paper on non-Euclidean
geometry. [3]

4.2 The Negation of the Parallel Postulate
There are two different cases if we take the negation of the Euclidean parallel postulate.
One of them is “Given a line and a point not on the line, no line through the point is parallel
to the given line" while the other one is “Given a line and a point not on the line, at least two
lines through the point are parallel to the given line". If we consider the first negation, we
get spherical geometry, while it gives us the hyperbolic geometry if we consider the second
negation. Furthermore, if there are at least two lines through the point are parallel to the
given line, there are actually infinitely many lines through the point are parallel to the given
line. So we choose to use this negation as the fifth axiom of hyperbolic geometry, which is
“Given a line and a point not on the line, infinitely many lines through the point are parallel
to the given line".

4.3 Axioms
Adding this to the few axioms of neutral geometry gives us the axioms of hyperbolic geom-
etry.
Axiom 1. We may draw a straight line between any two points.
Axiom 2. We may extend any terminated straight line indefinitely.
Axiom 3. We may draw a circle with any given point as center and any given radius.
Axiom 4. All right angles are equal.

The first 4 axioms are the same as in Neutral Geometry. For Hyperbolic Geometry, we
add the following axiom.
Axiom 5. Given a line and a point not on the line, infinitely many lines through the point
are parallel to the given line.

Theorem 4.1. The summit angles of a Saccheri quadrilateral are acute.

Proof: Assume that the summit angles of a Saccheri quadrilateral are not acute. Since
we have Theorem 2.7 and Theorem 2.12, we can get a result that the summit angles are
both right angles. Now we have found a rectangle, then by Theorem 2.13 every triangle
has an angle sum of 180°. This is equivalent to the Euclidean parallel postulate. This is a
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contradiction for hyperbolic parallel postulate. Therefore, the summit angles of a Saccheri
quadrilateral are acute. □

The Italian mathematician Giovanni Girolamo Saccheri in 1733 tried to prove the sum-
mit angles of a Saccheri quadrilateral are 90° but failed. However, in the mid-19th century,
Eugenio Beltrami, rediscovered this, as a significant result on non-Euclidean geometry.

In the proof of Theorem 4.1, we have actually proved the following theorem.
Theorem 4.2. Rectangles do not exist in hyperbolic geometry.

Theorem 4.3. Parallel Lines are not everywhere equidistant in hyperbolic geometry.

Figure 9: Theorem 4.3
Proof: To prove this, we must show that, if given any pair of parallel lines 𝑙 and 𝑚, we can
find at least one pair of points on line 𝑙 for which the distance to 𝑚 are not the same. To
prove this, we will begin with any three points on 𝑙 and proceed in the following way. In
Figure 9, choose any pair of parallel lines 𝑙 and 𝑚 and any three distinct points 𝐴, 𝐵 and 𝐶
on 𝑙 such that 𝐴 − 𝐵 − 𝐶 (𝐴, 𝐵 and 𝐶 are collinear pairs). 𝐷, 𝐸 and 𝐹 are the feet of the
perpendicular, respectively, from 𝐴, 𝐵 and 𝐶 to 𝑚.
Assume 𝐴𝐷 = 𝐵𝐸 = 𝐶𝐹 . Then Figure 9 displays three “inverted” Saccheri quadrilaterals:
□𝐷𝐴𝐵𝐸, □𝐸𝐵𝐶𝐹 and □𝐷𝐴𝐶𝐹 . So 𝑚∠𝐷𝐴𝐵 = 𝑚∠𝐸𝐵𝐴, 𝑚∠𝐸𝐵𝐶 = 𝑚∠𝐹𝐶𝐵, and
𝑚∠𝐷𝐴𝐵 = 𝑚∠𝐹𝐶𝐵. Then we have the congruent linear pair 𝑚∠𝐸𝐵𝐴 = 𝑚∠𝐸𝐵𝐶 = 90°.
Therefore, 𝑚∠𝐸𝐵𝐶 = 𝑚∠𝐹𝐶𝐵 = 𝑚∠𝐷𝐴𝐵 = 𝑚∠𝐹𝐶𝐵 = 90°. Therefore, □𝐷𝐴𝐵𝐸,
□𝐸𝐵𝐶𝐹 and □𝐷𝐴𝐶𝐹 are all rectangles. However, this a contradiction by Theorem 4.2.
Therefore, 𝐴𝐷 = 𝐵𝐸 = 𝐶𝐹 is false and we can conclude that parallel lines are not every-
where equidistant in hyperbolic geometry. □

Here we gave a proof to the statement we made in the last section. Some theorems are
true in Euclidean geometry, while its negation is true in hyperbolic geometry.
Theorem 4.4. The sum of the measures of the interior angles of a triangle is less than 180°.

Proof: Let △𝐴𝐵𝐶 be any triangle, see Figure 5. Bisect 𝐴𝐵 at 𝐷 and 𝐴𝐶 at 𝐸. Connect
𝐷𝐸 and extend 𝐷𝐸 towards both directions. Draw 𝐵𝐹 and 𝐶𝐺 ⟂ to the extended 𝐷𝐸.
Then we get a Saccheri quadrilateral𝐺𝐹𝐵𝐶 with summit𝐵𝐶 by Theorem 2.8. Draw𝐴𝐻 ⟂
𝐷𝐸. Again by Theorem 2.8, ∠𝐹𝐵𝐶 + ∠𝐺𝐶𝐵 = the angle sum of △𝐴𝐵𝐶 . By Theorem
4.1, ∠𝐹𝐵𝐶 < 90°, ∠𝐺𝐶𝐵 < 90°. Therefore, ∠𝐹𝐵𝐶 +∠𝐺𝐶𝐵 is less than 180°. Thus, the
sum of the measures of the interior angles of a triangle is less than 180°. □
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Comparing with similar theorems in the other two geometry systems, this theorem gives
us an excellent example that small changes to even one axiom in a geometry system can lead
us to a very different conclusion.
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